13.3 Measurements on Curves in 3D

Today: Unit Tangent and Normal, Arc Length, and Curvature

Entry Task

Consider $\boldsymbol{r}(t)=\left\langle t, t^{2}, 5\right\rangle$.
Find the unit tangent vector $\mathrm{T}(\mathrm{t})$.

Thm: \boldsymbol{T} and \boldsymbol{T}^{\prime} are always orthogonal.
Proof: Since $\boldsymbol{T} \cdot \boldsymbol{T}=|\boldsymbol{T}|^{2}=1$, we differentiate both sides to get

$$
\boldsymbol{T}^{\prime} \cdot \boldsymbol{T}+\boldsymbol{T} \cdot \boldsymbol{T}^{\prime}=0
$$

So $2 \boldsymbol{T} \cdot \boldsymbol{T}^{\prime}=0$.
Thus, $\boldsymbol{T} \cdot \boldsymbol{T}^{\prime}=0$. (QED)

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{T}}(t)=\frac{\overrightarrow{\boldsymbol{r}}^{\prime}(t)}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|}=\text { unit tangent } \\
& \overrightarrow{\boldsymbol{N}}(t)=\frac{\overrightarrow{\boldsymbol{T}}^{\prime}(t)}{\left|\overrightarrow{\boldsymbol{T}}^{\prime}(t)\right|}=\text { principal unit normal }
\end{aligned}
$$

TNB-Frame Facts:

- $\overrightarrow{\boldsymbol{T}}(t)$ and $\overrightarrow{\boldsymbol{N}}(t)$ point in the tangent and inward directions, respectively. Together they give a good approximation of the "plane of motion" called the osculating (kissing) plane.
- $\overrightarrow{\boldsymbol{T}}(t), \overrightarrow{\boldsymbol{N}}(t), \overrightarrow{\boldsymbol{r}}^{\prime}(t)$, and $\overrightarrow{\boldsymbol{r}}^{\prime \prime}(t)$ are ALL parallel to the osculating plane.
If we also define
$\overrightarrow{\boldsymbol{B}}(t)=\overrightarrow{\boldsymbol{T}}(t) \times \overrightarrow{\boldsymbol{N}}(t)=$ binormal
Then $\overrightarrow{\boldsymbol{B}}(t)$ is orthogonal to all of $\overrightarrow{\boldsymbol{T}}(t), \overrightarrow{\boldsymbol{N}}(t), \overrightarrow{\boldsymbol{r}}^{\prime}(t)$, and $\overrightarrow{\boldsymbol{r}}^{\prime \prime}(t)$.

Distance Traveled on a Curve

The dist. traveled along a curve from
$t=a$ to $t=b$ is
$\int_{a}^{b}\left|\boldsymbol{r}^{\prime}(t)\right| d t=\int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} d t$
Note: 2D is same without the $z^{\prime}(t)$.
We derived this in Math 125.

Examples:

1. Find the length of the curve

$$
\boldsymbol{r}(t)=\langle 1+3 \mathrm{t}, 2 \mathrm{t}, 5 t\rangle
$$

from $t=0$ to $t=2$.
2. Find the length of the curve
$\boldsymbol{r}(t)=\langle\cos (2 t), \sin (2 t), 2 \ln (\cos (t))\rangle$
from $t=0$ to $t=\pi / 3$.

If the curve is "traversed once" we call this distance the arc length.

Example: $x=\cos (t), y=\sin (t)$
(a) Find the distance traveled by this object from $t=0$ to $t=6 \pi$.
(b) Find the arc length of the path over which this object is traveling.

Arc Length Function

The distance from time $u=a$ to $u=t$ is called the arc length function

$$
s(t)=\int_{a}^{t}\left|\overrightarrow{\boldsymbol{r}}^{\prime}(u)\right| d u=\text { distance }
$$

Note:

$$
\frac{d s}{d t}=\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|=\text { speed }
$$

(a) Find the arc length function (from 0 to t).
(b) Reparameterize in terms of $s(t)$.

Curvature

The curvature at a point, K, is a measure of how quickly a curve is changing direction at that point.

That is, we define

$$
K=\frac{\text { change in direction }}{\text { change in distance }}
$$

So we define:

$$
K=\left|\frac{d \stackrel{\rightharpoonup}{\boldsymbol{T}}}{d s}\right|
$$

Computation

$$
K=\left|\frac{d \overrightarrow{\boldsymbol{T}}}{d s}\right|
$$

is not easy to compute directly, so we derive some shortcuts
$1^{\text {st }}$ shortcut:

$$
K(t)=\left|\frac{d \overrightarrow{\boldsymbol{T}}}{d s}\right|=\left|\frac{d \overrightarrow{\boldsymbol{T}} / d t}{d s / d t}\right|=\frac{\left|\overrightarrow{\boldsymbol{T}}^{\prime}(t)\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|}
$$

$2^{\text {nd }}$ shortcut

$$
K(t)=\left|\frac{d \stackrel{\rightharpoonup}{\boldsymbol{T}}}{d s}\right|=\frac{\left|\overrightarrow{\boldsymbol{T}}^{\prime}(t)\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|}=\frac{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t) \times \overrightarrow{\boldsymbol{r}}^{\prime \prime}(t)\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|^{3}}
$$

Example: Find the curvature function for $\boldsymbol{r}(t)=\langle t, \cos (2 t), \sin (2 t)\rangle$.

Answer:

$$
\begin{aligned}
\boldsymbol{r}^{\prime}(t) & =\langle 1,-2 \sin (2 t), 2 \cos (2 t)\rangle \\
\boldsymbol{r}^{\prime \prime}(t) & =\langle 0,-4 \cos (2 t), 4 \sin (2 t)\rangle
\end{aligned}
$$

$$
\left|r^{\prime}(t)\right|=\sqrt{1+4 \sin ^{2}(2 t)+4 \cos ^{2}(2 t)}
$$

$$
\text { so }\left|\boldsymbol{r}^{\prime}(t)\right|=\sqrt{5}
$$

$\boldsymbol{r}^{\prime}(t) \times \boldsymbol{r}^{\prime \prime}(t)=\langle-8,-4 \sin (2 t),-4 \cos (2 t)\rangle$
So $\left|\boldsymbol{r}^{\prime}(t) \times \boldsymbol{r}^{\prime \prime}(t)\right|=\sqrt{64+16}=\sqrt{80}$

$$
\frac{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t) \times \overrightarrow{\boldsymbol{r}}^{\prime \prime}(t)\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|^{3}}=\frac{\sqrt{80}}{\sqrt{5}^{3}}=\sqrt{\frac{80}{125}}=0.8
$$

This curve has constant curvature.

Proof of shortcut:

Theorem: $\frac{\left|\boldsymbol{T}^{\prime}(t)\right|}{\left|r^{\prime}(t)\right|}=\frac{\left|\boldsymbol{r}^{\prime}(t) \times r^{\prime \prime}(t)\right|}{\left|\boldsymbol{r}^{\prime}(t)\right|^{3}}$
Proof:
Since $\boldsymbol{T}(t)=\frac{\boldsymbol{r}^{\prime}(t)}{\left|\boldsymbol{r}^{\prime}(t)\right|^{\prime}}$, we have

$$
\boldsymbol{r}^{\prime}(t)=\left|\boldsymbol{r}^{\prime}(t)\right| \boldsymbol{T}(t)
$$

Differentiating this gives (prod. rule):

$$
\begin{aligned}
& \text { Since } \boldsymbol{T} \times \boldsymbol{T}=<0,0,0>\text { (why?) } \\
& \text { and } \boldsymbol{T}=\frac{\boldsymbol{r}^{\prime}}{\left.\boldsymbol{r}^{\prime}\right|^{\prime}} \text { we have } \\
& \qquad \frac{\boldsymbol{r}^{\prime} \times \boldsymbol{r}^{\prime \prime}}{\left|\boldsymbol{r}^{\prime}\right|}=\left|\boldsymbol{r}^{\prime}\right|\left(\boldsymbol{T} \times \boldsymbol{T}^{\prime}\right) .
\end{aligned}
$$

Taking the magnitude gives (why?) $\frac{\left|\boldsymbol{r}^{\prime} \times \boldsymbol{r}^{\prime \prime}\right|}{\left|\boldsymbol{r}^{\prime}\right|}=\left|\boldsymbol{r}^{\prime}\right|\left|\boldsymbol{T} \times \boldsymbol{T}^{\prime}\right|=\left|\boldsymbol{r}^{\prime}\right||\boldsymbol{T}|\left|\boldsymbol{T}^{\prime}\right| \sin \left(\frac{\pi}{2}\right)$,

$$
\boldsymbol{r}^{\prime \prime}(t)=\left|\boldsymbol{r}^{\prime}(t)\right|^{\prime} \boldsymbol{T}(t)+\left|\boldsymbol{r}^{\prime}(t)\right| \boldsymbol{T}^{\prime}(t)
$$

Since $|\boldsymbol{T}|=1$, we have

$$
\left|\boldsymbol{T}^{\prime}\right|=\frac{\left|\boldsymbol{r}^{\prime} \times \boldsymbol{r}^{\prime \prime}\right|}{\left|\boldsymbol{r}^{\prime}\right|^{2}}
$$

$\boldsymbol{T} \times \boldsymbol{r}^{\prime \prime}=\left|\boldsymbol{r}^{\prime}\right|^{\prime}(\boldsymbol{T} \times \boldsymbol{T})+\left|\boldsymbol{r}^{\prime}\right|\left(\boldsymbol{T} \times \boldsymbol{T}^{\prime}\right)$.
Therefore

$$
K=\left|\frac{d \boldsymbol{T}}{d s}\right|=\frac{\left|\boldsymbol{T}^{\prime}(t)\right|}{\left|\boldsymbol{r}^{\prime}(t)\right|}=\frac{\left|\boldsymbol{r}^{\prime} \times \boldsymbol{r}^{\prime \prime}\right|}{\left|\boldsymbol{r}^{\prime}\right|^{3}} .
$$

Note: To find curvature for a 2D function, $y=f(x)$, we can form a 3D vector function as follows

$$
\boldsymbol{r}(x)=\langle x, f(x), 0\rangle
$$

$$
\text { so } \begin{aligned}
\boldsymbol{r}^{\prime}(x) & =\left\langle 1, f^{\prime}(x), 0\right\rangle \quad \text { and } \\
\boldsymbol{r}^{\prime \prime}(x) & =\left\langle 0, f^{\prime \prime}(x), 0\right\rangle \\
\left|\boldsymbol{r}^{\prime}(x)\right| & =\sqrt{1+\left(f^{\prime}(x)\right)^{2}} \\
\boldsymbol{r}^{\prime} \times \boldsymbol{r}^{\prime \prime} & =\left\langle 0,0, f^{\prime \prime}(x)\right\rangle
\end{aligned}
$$

Thus,

$$
K(x)=\frac{\left|\boldsymbol{r}^{\prime} \times \boldsymbol{r}^{\prime \prime}\right|}{\left|\boldsymbol{r}^{\prime}\right|^{3}}=\frac{\left|f^{\prime \prime}(x)\right|}{\left(1+\left(f^{\prime}(x)\right)^{2}\right)^{3 / 2}}
$$

Example: $f(t)=x^{2}$
At what point (x, y, z) is the curvature maximum?

Summary of 3D Curve Measurement Tools:

Given $\overrightarrow{\boldsymbol{r}}(t)=<x(t), y(t), z(t)>$
$\overrightarrow{\boldsymbol{r}}^{\prime}(t)=$ a tangent vector
$s(t)=\int_{0}^{t}\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right| d t$
$K=\left|\frac{d \overrightarrow{\boldsymbol{T}}}{d s}\right|=\frac{\left|\overrightarrow{\boldsymbol{r}}^{\prime} \times \overrightarrow{\boldsymbol{r}}^{\prime \prime}\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|^{3}}$
$\overrightarrow{\boldsymbol{T}}(t)=\frac{\overrightarrow{\boldsymbol{r}}^{\prime}(t)}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|}=$ unit tangent
$\overrightarrow{\boldsymbol{N}}(t)=\frac{\overrightarrow{\boldsymbol{T}}^{\prime}(t)}{\left|\overrightarrow{\boldsymbol{T}}^{\prime}(t)\right|}=$ principal unit normal

